
Neural Models of Mind: Mapping Reflective Computation

Bo Morgan
bo@mit.edu

Example: Nontrivial Cognitive Environment

Repeated successful execution of traceable actors results in the
creation of trusted actors—optimized and compiled for fast execution.

Trusted Compiled Mental Resource Actors

Preferentially Ordered Declarative Goal Structures
A dynamic goal structure distributed throughout a network of
interconnected parallel computational problem solving resources.

Imagined Plans: Cooperative Subgoal Collections

Collections of sufficient subgoal conditions for comprising modular
components of the overall distributed declarative structure.

Memoized Mental Resource Simulators
Each actor's execution can be memoized dependent on goal structure
context, which can be used for simulation without external effects.

Traceable Compiled Mental Resource Actors

Each sequential effect of these traceable actors is recorded, such that
if any error occurs debugging processes can know what is responsible.

Example: Nontrivial Cognitive Architecture

Understanding natural processes as computational models has proven to be a
useful way of seeing and simulating the world around us. If the computational
model is simple enough, such as Mendel's binary model of genetic inheritance, it
can be simulated within a human mind, such as Mendel's mind. However, when
the computational processes become complex, such as models of world
economies or human minds, they become impossible for humans to mentally
simulate without computers. Measuring features of the natural process of

Example: Simple Computational Model

Mendel's Model of Genetics

Natural
Features:

fMRI,
EEG,
MEG,
PET,

fNIRS,
EKG,
EMG,
GSR,
etc.

Example: Nontrivial Natural System

cognition as evidenced by the human brain have become more numerous recently; these include: fMRI, EEG, MEG, PET,
fNIRS, and others. In addition, secondary external natural features include: EKG, EMG, GSR, and others.

However, useful computational features have been more illusive. Examples of the most basic computational features
include: (1) memory creation, (2) memory read, and (3) memory write. Tracing all causal relationships between these basic
features allows tracing the context of all other programmer-defined semantic abstractions. All of these computational
features create an intricate trace network of dependencies, automatically traced and shared by many parallel threads of
execution. We are experimenting with a programming language that allows this to occur modularly to dynamically chosen
parts of large complex processes. The resulting dependency trace networks can be processed by critically reflective threads.
Discovering useful reflective threads for cognitive models of learning in complex environments is one of our goals.

Run-time reflective computation is a field of
computer science that allows processes to be watched
by other processes as they are running.

The ability to reflect on causal dependency traces of a computational process allows two things:
1. Begin mapping natural features to and from computational features.
2. Begin designing novel reflective computational learning models of cognition.

Many features of natural
processes can be measured, but it
is currently difficult to correlate
these features with complex
models.

Very few features of computational
processes are currently measured.
We are writing an experimental
programming language for
measuring these features.

Natural biological humans and
their very complex brains can
act within similar behavioral
experiments as human-designed
computational models of
intelligence (A.I. models).

Human-designed computational
models of intelligence (A.I.
models) can interact with
simulated problem-solving
environments of nontrivial
complexity.

Correlation of Natural with Computational Features

PERCEIVE
and

ACT

PERCEIVE
and

ACT

Patterns in traces can be recognized and compiled into
simpler representations for other critics to process. For
example, all causal dependencies relevant to accomplish a
specific goal can be compiled for quick retrieval later.

History Writers

If there is a problem attempting to allocate a lower-level
resource for two independent threads of execution, a critic
may attempt to discover what two subgoals are to blame
for this unanticipated interaction.

Resource Conflict Blame Arbiters

If there is a process that executes and ultimately has no
effect toward accomplishing the goals of the system, note
that these processes did not need to be executed.

Pointless Process Recognizer

As goals are often pursued and accomplished together
these groups can be recognized and remembered for future
planning deliberative simulations.

Cooperative Resource Selector Learners

As conflicts are traced between groups of goals, these
goals can be learned to be within mutually exclusive
allocation sets. These MUTEXs can be learned critically
through run-time trace feedback.

Conflicting Resource Allocation Learners

Many resources are limited, forcing the serial execution of
some goals. We can recognize that some combinations of
goals are better than others for either optimal resource
distribution or a minimal time until goal completion.

Problem Distribution Balance Learner

Reflective critics help a planner to learn to plan through run-time experience.

