
Funk2: A Frame-based Programming Language with Causally Reflective
Capabilities

(2009/06/18 draft in progress)

Bo Morgan

Media Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
bo@mit.edu

Abstract
We introduce a novel programming language called Funk2
that implements a convenient form of event tracing for pro-
cess execution. Funk2 is a pure C project that implements a
peer-to-peer memory system for execution large numbers of
abstract threads that can be intricately monitored and con-
trolled. Funk2 has been built as a programming language
for cognitive scientists to easily work together in simulating
complicated symbolic theories of mind. Much of cogni-
tive science has recently been working with simple (ala Oc-
cam’s Razor) mathematical models of mind. We are buck-
ing this trend by writing a powerful programming language
as a symblic alternative to the simple linear algebraic mod-
els that packages such as Matlab are optimized to simulate.
This paper outlines two of the basic features of the Funk2
language: (1) “rewindable” memory for implementing re-
flective models, and (2) “imaginary” memory for experi-
menting with contrapositive models of planning.

1 The Reflective Model Language
and Simulator

The Funk2 project includes a lisp-like programming lan-
guage that has a few helpful features that most program-
ming languages don’t have. Many of these helpful features
are based around a central idea that we call “causal tracing”.
Causal tracing is a simple idea that is not implemented in
any other programming language as far as we know. The
basic idea is that a memory object is passed from the causal
source of a statement’s evaluation through every function
that is executed by that statement. We call this memory
object a “cause” because it is created and used by the eval-
uator of the original statement. The cause object is used
to implement many different features within the Funk2 pro-

gramming language.

2 Why a new Programming Lan-
guage?

2.1 Causally Traced Execution and Memory
Causally traced execution and memory are required for our
vision of reflective perception of concurrent processes. We
will discuss the causal tracing tools that we have built into
the Funk2 programming language briefly in this document
as well as describe how we plan to use these tools in build-
ing stages of learning to read children’s stories through crit-
ical reflection. These causal tracing features are the primary
reason for writing the Funk2 programming language. The
causal tracing features of the Funk2 programming language
are not available in any other large-scale and efficient pro-
gramming language to our knowledge. That said, there are
other reasons that have compelled us to write the Funk2 pro-
gramming langauge, which follow.

2.2 Simple, Fast, and Free Software for the
Cognitive Sciences

Free information flow in the medical scientific research
community of modelling human minds is important to en-
courage academic research. Currently there are very few
programming languages that are made to learn to write com-
puter programs. We see the fact that Lisp has a very simple
and consistent syntax as well as a run-time compiler as nec-
essary features of any programming language with this goal.
Currently, there are no free versions of Lisp that run on all
operating systems and that are efficient enough to handle
our task. Current free languages that run on all operating
system that also contain run-time compilers, such as Python

1



and Ruby, are not fast enough for our task. The Funk2 lan-
guage has a simple syntax, is written in pure C under the
very liberal MIT license, and is optimized for learning to
plan over a massive peer-to-peer distributed memory.

2.3 Peer-to-Peer Distributed Memory Layer
Our peer-to-peer distributed memory layer has been imple-
mented for a few key reasons:

1. The simulation of very large and complicated causally
traced reflective models should be able to take advan-
tage of multiple personal computers concurrently.

2. In order to develop a cooperative environment where
we can combine the expertise of all of the cognitive
sciences, we need a modelling language that not only
is easy to use but also allows many people to work to-
gether. So, we see our peer-to-peer memory layer as
a future experiment for applying causal tracing of re-
sponsibility for human failure in the development of
very large and complicated mental models of humans.

3. Peer-to-peer means no centralized, beurocratic, or hi-
erarchical control of the project.

3 Cognitive Reflective Modelling
Features

4 Basic Causal Event Tracing
The most basic of these features is the “causal event trac-
ing” or simply the “causal tracing” feature. Following
are two examples of function definitions, a-function
and b-function, that report events that can be causally
traced in Funk2:

[defunk a-function [x]

[event ‘a-function-event-type [list ‘called-with-arg x]]]

[defunk b-function [y]

[event ‘b-function-event-type [list ‘called-with-arg y]]

[a-function [+ y 1]]

[a-function [+ y 2]]

[event ‘b-function-event-type ‘successfully-completed]]

Here, defunk defines a global function. So far, these
event reporting functions are very similar to normal mes-
sage passing architectures that simply report messages to
other named processes (such as in the Erlang model); how-
ever, because our processes are causally traced, we have the
ability to monitor events that only our process has caused to
happen. We control event reception through causal tracing

rather than named processes. We think of this change in the
event reception control in Funk2 as similar to switching a
surjective function to an injective function, thus emphasiz-
ing the collection of events from groups of processes as op-
posed to the distribution of events to individual processes.

Here is an example of how causal tracing can be used in a
simple example, where we call the second function defined
above, b-function, and causally collect all of the events
of the type a-function-event-type:

in--> [trace ‘a-function-event-type [b-function 10]]

out-> [[event a-function-event-type [called-with-arg 11]]

[event a-function-event-type [called-with-arg 12]]]

Notice that the only events collected by the cause
object in this case are those of the specific type
a-function-event-type.

Here is an example of how causal tracing can be used in
another simple example, where we collect all event types
from executing the same function, b-function, with the
same argument, 10:

in--> [trace ‘all-event-types [b-function 10]]

out-> [[event b-function-event-type [called-with-arg 10]]

[event a-function-event-type [called-with-arg 11]]

[event a-function-event-type [called-with-arg 12]]

[event b-function-event-type successfully-completed]]]

Notice in this case that all events are collected from the hi-
erarchical function calls. So far, these uses of causal tracing
are not novel forms of process tracing, and one could see
the following as an example implementation of this form of
process tracing:

[globalize global-event-collection nil]

[globalize global-event-type-filter nil]

[defmetro trace [event-type expression]

‘[prog [= global-event-collection nil]

[= global-event-type-filter [quote ,event-type]]

,expression]]

[defunk event [event-type event-data]

[if [eq event-type global-event-type-filter]

[push [list event-type event-data] global-event-collection]]]

Here, globalize defines a global variable; defmetro
defines a global macro; = sets the value of a variable; and
eq compares two symbols for equality. Notice that this
code is not thread safe and won’t work for tracing concur-
rent programs.

For our next example, we will use the following function

2



that executes two causal tracing operations concurrently:

[defunk concurrent-tracer-function [z w]

[parlet [[result-one [trace ‘a-function-event-type [b-function z]]]

[result-two [trace ‘a-function-event-type [b-function w]]]]

[list result-one result-two]]]

Here, parlet first creates two local variables,
result-one and result-two. parlet next
evaluates the two causal tracing expressions concur-
rently and stores their values in the newly created
local variables. Lastly, parlet executes the list
command with the results of the two concurrent
causally traced expressions. Given this definition of
concurrent-tracer-function, we would expect
the following concurrent program to execute as follows:

in--> [concurrent-tracer-function 10 20]

out-> [[[event a-function-event-type [called-with-arg 11]]

[event a-function-event-type [called-with-arg 12]]]

[[event a-function-event-type [called-with-arg 21]]

[event a-function-event-type [called-with-arg 22]]]]

If, on the other hand, we used the naive global queue imple-
mentation of process tracing for the same concurrent func-
tion call, our resulting list would be flat and out of order,
similar to the following:

in--> [concurrent-tracer-function 10 20]

out-> [[event a-function-event-type [called-with-arg 11]]

[event a-function-event-type [called-with-arg 21]]

[event a-function-event-type [called-with-arg 12]]

[event a-function-event-type [called-with-arg 22]]]

It should now be clear that the naive implementation
of process tracing does not handle concurrently executing
processes in the same highly organized manner that our
causally traced event tracing does.

5 Causal Memory Event Tracing
The Funk2 memory system is fundamentally composed of
arrays. Each of these arrays can either be allocated as a
“traced” or “simple” array. Traced arrays have extra mem-
ory allocated for each slot in order to keep track of (1) the
causal history of that slot and (2) the imaginative values of
that slot.

5.1 Traced Memory
We have seen how causal tracing can be used to trace the
current execution of a process. Traced memory allows for

keeping track of historical mutations of array slots. By col-
lecting linked lists of mutation events at the memory loca-
tion of each array slot, we can easily “rewind” any traced
memory objects to see their values at any historical point
in time. For example, let us define two global variables,
sequence and times, that we will mutate in order to
keep track of a mutated list and the times of those muta-
tions respectively:

[globalize sequence [list 0 0 0 0 0 0 0 0 0 0]]

[globalize times [list 0 0 0 0 0 0 0 0 0 0]]

[dotimes [index 10]

[elt-set times index [microseconds-since-1970]]

[elt-set sequence index index]]

Here, dotimes is a loop operator that loops ten times, mu-
tating the elements of the sequence list and stores the
times of those mutations in the times list. The values of
these two lists at the current time are as follows:

in--> sequence

out-> [0 1 2 3 4 5 6 7 8 9]

in--> times

out-> [1398361219283811 1398361219561113 1398361219828195

1398361220946740 1398361220361727 1398361220629388

1398361220896560 1398361221163860 1398361221431032

1398361221699425]

Now, in the case that these lists are created with traced
memory objects, we can “rewind” the slot values of each
memory object. We call the operation of rewinding mem-
ory objects and creating new memory objects that repre-
sent the historical states “remembering” the historical mem-
ory objects. The following is an example of remembering
the sequence list at the time when the dotimes loop
index variable was 5:

in--> [remember sequence [elt times 5]]

out-> [0 1 2 3 4 0 0 0 0 0]

in--> sequence

out-> [0 1 2 3 4 5 6 7 8 9]

Notice here that the sequence list is not modified by the
remember operation. In this section, we have focused on
tracing memory mutations, but we have not discussed how
causal tracing of memory mutations can help us in tracing
the responsibility for these mutations. We expect to explore
the tracing of the responsibility of memory creation and mu-
tations in our reflective learning algorithms over the next
year of the PhD.

3



5.2 Imaginative Memory
Traced arrays not only have the ability to keep track of a
linked list of caused historical mutations but also the ability
to keep track of frames of what we call “imaginative” mem-
ory values. For example, consider the following where we
define a global variable called value to be the value 10
and then execute some tagged imaginary operations involv-
ing this variable:

in--> [globalize value 10]

out-> nil

in--> value

out-> 10

in--> [imagine ‘a-imagination value]

out-> 10

in--> [imagine ‘a-imagination [= value [+ value 1]]]

out-> nil

in--> value

out-> 10

in--> [imagine ‘a-imagination value]

out-> 11

Notice that we can evaluate expressions that have mutat-
ing side effects without affecting the “real” memory sys-
tem. We see our tagged imaginary memory as being a very
helpful tool for building planners that perform inference in
order to search for how to accomplish goals in Funk2. More
advanced imaginative memory features involve recursive
imaginations by using stacks of imagination tags in each
cause object.

References
Acknowledgments
This work is supported in part by a fellowship from Bank of
America.

4


