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Abstract—We propose to develop a theory for how a social
culture of how problems are solved is learned and commu-
nicated between generations in a species. Our presentation
and validation of our theory includes a description, a model
implementation, and a quantitative as well as qualitative
evaluation. Our theory of how children learn from parents
is based on a problem-solving algorithm spanning a society
with a combination of experienced and inexperienced agents.
Cultural knowledge is a powerful form of transmitted knowl-
edge that sets the state of the inexperienced individual to an
approximation of the optimal state for helping the individual
solve problems. It is important for computational theories of
learning to provide explanations for (1) learning by trial and
error, (2) learning by mimicry, as well as (3) learning by being
told. This last form of learning by being told is important
because it allows for much of the power of human cultural
knowledge to be used by machines. Our theory is aimed to
show how an understanding of learning by trial and error can
be generalized to multiple layers in a reflective critic-selector
learning algorithm in order to provide one cohesive theory for
all three of these forms of learning. We present a relational
social blocks world simulation with children and parents that
will be used to evaluate an implementation of our theory by a
collection of human subjects who provide their commonsense
evaluations of the emotions and behaviors expressed by our
model in the context of different example narratives.

Keywords-common sense reasoning; cognitive architecture;
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I. INTRODUCTION

We have focused our thesis on the parent-child relation-
ship because this is the first form of social relationship that
an individual experiences. Parents and children share special
and powerful forms of communication, based fundamentally
upon scold-guilt and praise-pride command languages [1].
We model social life as a system of evolutionary survivabil-
ity in a world of limited resources in which a set of indi-
viduals compete for these resources in order to reproduce.
Because our mathematics incorporates simple genetics and
sexual reproduction, our primary social relationship is the
parent-parent-child sexual reproduction relationship. Other

secondary forms of relationship in our model include the
parent-stranger and child-stranger relationships. In terms of
genetic competition and individual survivability, we compare
the properties of resource distribution with these most basic
relationship structures. The individuals in our model are
rewarded for solving problems that are distributed in a
simple spatial world.

In order to make these problems similar to the types of
problems that humans solve in common everyday situations,
we focus on a problem-solving domain within a simple
3D commonsense computer game environment. Problem-
solving in an individual problem solver has been well
studied, but how a society of problem-solvers develop has
not.

II. HYPOTHESIS

In terms of well established problem-solving metrics in
AI, we may have time to piecewise test aspects of our ar-
chitecture against various standards from the more narrowly
focused fields of computer science and machine learning.

In our model, parents and teachers sometimes provide
positive or negative feedback to our model of a child. So, if
time permits, we will circumscribe this small aspect of our
model for comparison against a modern relational reinforce-
ment learning problem [2] (e.g. reinforcement learning in a
relational blocks world domain).

Also in our model, we can consider part of our reflective
layer as implementing what is referred to as “chunking”
in the explanation-based fields of machine learning [3] and
cognitive science. So, if time permits, we can compare the
efficiency of reflective “chunking” in our system with our
system without this part of our reflective layer.

We hypothesize that each of the reflective layers in our
cognitive model enable our algorithm to handle incremen-
tally more complex problem-solving domains. We will use
a social relational problem domain to quantitatively show
how our (1) reflective, (2) self-reflective, and (3) self-
conscious layers of our algorithm affect performance. We
expect the complexity of the specific relational problem



domain to affect performance, so we will evaluate the goal-
state attainment performance of our algorithm in a number
of commonsense scenarios of varying complexity.

In addition to quantitative problem solving metrics, it
is important to measure the correlation of activations of
technical pieces of our algorithm with commonsense folk
psychological states of mind [4]. We expect that some
parts of our algorithm will correspond with commonsense
psychology terms, such as “surprise”, “disappointment”,
“guilt”, “pride”, etc. For example, Figure 5 shows questions
that address the commonsense nature of the six layers of our
model in the context of solving a problem in an example
scenario.

III. BACKGROUND

1) Common Sense Requires Many Ways to Think: An
architecture that has only one way of thinking will get stuck
on some types of problems, so we are focusing on build-
ing an architecture that can switch between multiple ways
of thinking. These ways of thinking are connections and
activations of constellations of reflective, deliberative, and
reactive sets of critics and selectors. The original theory for
how to build such an architecture was published in [5] as a
model involving layers of self-reflective, self-conscious, and
self-ideal critics for reflective control of an already reflective
algorithm. Also, the reader is referred to this work for a
more detailed description of the critic-selector algorithm.
We need an architecture that allows many different ways
to think because while a single reasoning method may work
for a specific problem, no any one reasoning method works
for solving all different types of problems [6]. Perhaps one
day we will discover a simple key or mathematical formula
for deriving all other intelligence, but let’s first focus on
building a machine that demonstrates any kind of robust
commonsense intelligence before making any simplifying
optimizations. What we see as necessary for developing a
model of commonsense intelligence is the ability to quickly
switch between different representations of problems that
allow different reasoning methods to continue where any
single method would have gotten stuck. See [7] for an
overview of the Panalogy architecture for a more detailed
explanation of why multiple representations that invoke
different procedures of thought are necessary for building
a model of a robust problem solving mind.

A. A Review of The Emotion Machine v1.0

One system that implements commonsense reasoning,
based on Minsky’s Emotion Machine theory of mind [8],
is a metareasoning system for correcting faulty plans, called
EM1 (Emotion Machine, v1) [9]. EM1 is written in Lisp,
using a Prolog extension as the logical resolution tool. EM1
is a layered architecture consisting of reactive, deliberative,
and reflective layers. Mental critics are represented as com-
monsense narratives that result in queries to a collection

of different Prolog knowledge bases. The commonsense
narratives are given to the system in a Lisp format that is
compiled into the knowledge bases as collections of horn
clauses. These knowledge bases consist of collections of
domain-specific horn clauses that are divided into physical,
social, and mental domains of reasoning. On top of this
Prolog logical substrate, the Lisp program is organized
into layers as a critic-selector model of mind [10]. The
narrative plans that are generated by the deliberative layer
are executed by a lower-layer, called the reactive layer. Part
of the reactive layer of the algorithm is written in C and runs
PID control loops in a simulated social two-wheeled inverted
pendulum type robot. EM1 demonstrates how a system can
use commonsense narratives in order to reason by analogy in
order to generate plans. Also, EM1 demonstrates a learning
process that is driven by reflective critical recognition of
failure. Because of the complexity of the rigid-body physics
in the world, sometimes even the most carefully constructed
plans fail. EM1 has a layer of reflective critics that debug
deliberative narratives as they are being interpreted by using
a collection of commonsense narrative debugging critics.
Using narratives about social situations, EM1 infers the goals
of the other agents in the world given partial knowledge of
their visible physical actions. When mistakes are made in
this inference process, the failure is recognized reflectively,
after the fact. Specific types of debugging responses are
implemented for different forms of critical failures. EM1 is
a step toward a large and complex commonsense reasoning
agent with multiple layers of metareasoning that inspect,
control, and debug mental representations.

B. Closed-loop Control and Learning as a Cognitive Model

There are many AI algorithms that provide explanations
for how to accomplish goals or gather rewards in a do-
main. A basic AI system consists of three processes: (1)
perceptual data are generalized and categorized to learn
induced abstract models, (2) abstract models are used to
infer expected hypothetical states, i.e. states of future, past,
or otherwise “hidden” variables, (3) actions are chosen based
on considerations of different action-dependent inferences.

While there are many types of machine learning algo-
rithms that focus on this abstract 3-step closed-loop process
of learning to control, the field of meta-cognition [11]
focuses on making at least two layers of closed-loop sys-
tems. The first closed-loop learning algorithm learns how to
deal with the external world, while the second closed-loop
learning algorithm perceives the state of the algorithm below.
We see meta-cognition as a layering of learning algorithms,
such that the second layer algorithm learns from perceiving
the activity of the first layer and controls or modifies this
first layer. While it may be clear how to trace changes in
the perceptual inputs of layer one of the algorithm, it is less
than clear how the second layer learner should monitor the
changes in the state of the first layer learner.



Phy Rea LR Del Ref SRef SC
Roboverse [12] X X

LifeNet [13] X X
Act-R [14] X X

CogAff [15] X X X
EM-1 [9] X X X

Funk2 [16]
Commonsense-S

Moral-C

X — The model implements this reflective layer.
— The model will implement this reflective layer.

Figure 1. Modelling projects for AI and what reflective layers they
have included: physical layer (Phy), reactive layer (Rea), learned reactive
layer (LR), Deliberative Layer (Del), Reflective Layer (Ref), Self-Reflective
Layer (SRef), Self-Conscious Layer (SC). Commonsense Simulator is the
environment for which our Moral Compass AI model exists as a controller.

C. The Theoretical Space of Reflective Cognitive Models

Figure 1 shows how different cognitive models have
focused on implementing specific ranges of the reflective
layer stack. Roboverse is a rigid-body physics simulation
that implements physical laws and also has basic goals for
a robot, such as moving to a location, or picking up an
object. Roboverse is a good example of a model that is
not an AI model. Roboverse is a physics model. Every AI
model is as opposed to a physics model. Control theory
would call the physics model, the model of the plant, while
it would call the AI model, the model of the controller. Our
AI model consists of five layers of control algorithms that
handle different types of goals: (1) Learned Reactive, (2)
Deliberative, (3) Reflective, (4) Self-Reflective, and (5) Self-
Conscious. These are roughly the same layers as Minsky’s
Model-6 theory. CogAff is one of only a few reflective
cognitive architectures being researched in the world today,
and they have focused on modelling three of six of the
Model-6 layers of reflection. EM-1 is the first example of
a critic-selector architecture with three layers of reflection
modelled after the bottom three layers of the Model-6 theory.
Funk2 is our reflective programming language project that
will allow us to easily build an arbitrary structure of layers of
reflective control. Moral Compass is a cognitive architecture
that includes Reflective, Self-Reflective, and Self-Conscious
critic-selector layers that allow an agent to act realistically
in a physical social simulation. Moral Compass uses the
Commonsense Simulator as the physical model that it is
controlling and thinking about.

D. The Layers in our Model

Physical actions are special types of agent actions be-
cause they are actions that, unless visually obstructed, are
observable by other agents. Mental states of other agents can
then be inferred by analogical comparison to an agent’s own
memories of the mental states that caused similar physical
streams of actions. A few examples of physical goals that

an agent can perform in the commonsense simulation are as
follows:

1) move to
2) move in direction
3) set posture
4) move near object
5) pick up object
6) drop object
7) use object with object
Because our model is primarily meant to model the

internal workings of a person’s mind, it contains additional
layers of mental goals that influence the pursuit of basic
physical goals. The deliberative layer of goals makes plans
for how to serialize and parallelize the basic physical goals.
The deliberative layer implements a form of planning based
on the critic-selector model. Examples of deliberative goals
in our model include:

1) infer successful action meant to cause state
2) infer failure action meant to cause state
3) recall similar state
4) recall similar successful action
5) infer plan to goal state
6) recall similar plan causing state
Deliberative goals sometimes run into problems them-

selves, so an additional reflective layer of goals exists in
order to coordinate when and how deliberative thought
should progress. Examples of a few reflective mental goals
include:

1) infer plans conflict
2) infer plans share serial resource
3) combine two plans
4) check plan action effect clobbers action precondition

bug
5) ignore deliberative goal
6) focus on deliberative goal
7) recall similar successful plan
8) recall similar failure plan
9) induce debugging transframe1 between plans

10) apply debugging transframe to plan
Even a deliberative layer with reflective control of its

processes can run into problems. In order to keep track of
what types of problems that a system is good or bad at
solving, it uses “self-models” that keep track of its strengths
and weaknesses. Goals that use these self-models in order
to provide further insight into how the deliberative and
reflective layers should be trained, modified, or otherwise
controlled, we refer to as self-reflective goals. Examples of
a few self-reflective mental goals include:

1) activate reflective personality
2) suppress reflective personality

1transframe: a frame object representing a number of changes to be
made to a frame’s slots that results in another frame. Transframes are used
here to represent changes in relational (i.e. frame-based) representations.



3) check personality focus/ignorance conflict
4) recall similar successful personality
5) recall similar failure personality
6) induce debugging transframe between personalities
7) apply debugging transframe to personality
8) recall similar successful personality accomplishing fo-

cus/ignorance goal
Examples of a few self-conscious mental goals include:

1) infer cause of agent imprimer guilt
2) infer cause of agent imprimer praise

E. A Programming Language Specifically Designed for the
Next Emotion Machine

Funk2 [16] is a programming language that we have writ-
ten with the following programming language and cognitive
architectural goals in mind:

1) causal tracing of arbitrary lisp-like processes,
2) massively concurrent multi-threaded simulations, in-

cluding many thousands of lightweight parallel pro-
cesses,

3) layers of reflective critic-selector problem solving,
4) commonsense reasoning cognitive architecture primi-

tives, such as person, event, goal, belief, narrative, etc.
We have completed goals one and two in our current de-
scribed implementation. We are currently working on goals
three and four.

Just after Push Singh completed his PhD work of building
EM1 in 2006, he sadly passed away, leaving a large project
filled with great potential for future research, but since
2006, no one to our knowledge has worked on any other
critic-selector cognitive architectures related to this work.
Because of this, there seems to us to be a hole in this field
of reflective critic-selector cognitive architecture research.
Two years ago this fact was very clear to us, and we at
that point volunteered for the job of rewriting the original
architecture in order to pursue some of the original goals.
We have programmed the beginning of a new Emotion Ma-
chine critic-selector architecture. As there are many future
directions for the EM1 architecture, there were also many
problems with the architecture as it was implemented then.
Some of the primary concerns that we have with this original
implementation are as follows:
• Reasoning is very slow with only 21 narratives in the

memory of the architecture.
• Critics and selectors are specified in a declarative

logical form, which does not allow for reasoning over
noisy or imperfect data.

• The declarative form of the Critic-L language allows
for inserted procedural Lisp code, but any procedural
code inserted in this way is not reflectively traced.

• Critics and selectors cannot run in parallel, which
eliminates the potential for using the architecture for
solving any form of parallel control problem.
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Figure 2. An example of an executing plan containing a loop being
interpreted and leaving a trace of plan events with conditional events tagged
with contextual information, including the condition evaluated (COND) as
well as the causal context (CAUSE). The symbol “*” refers to a list of
goals, activated critics and selectors, the function call stack, and other user-
specified contextual hints. The “?” represents a conditional expression in a
“while” loop.

• The architecture has great potential for parallelization
but cannot take advantage of multi-core CPUs or dis-
tributed processors.

• Architecture is based on the expensive proprietary com-
mercial languages of Allegro Lisp and Allegro Prolog,
which cannot be used freely by researchers.

• Self-reflective, self-conscious, and self-ideal critics and
selectors are future work to still be implemented.

• Critics and selectors are not learned from experience.

1) Tracing Procedural Branches in Causal Context: Fig-
ure 2 shows a schematic example of how a plan interpreter
scans along a plan and, whenever it encounters a conditional
branch, leaves a causal trace of reasons for each decision
made by the process interpreting the plan.

Causality refers to an agent that causes a change in the
world. In our case, the agent is vague and consists of the
current context of the computation; for example, what goals
are currently actively being pursued. This type of memory is
important to keep track of in many different representations
itself, so that when a change is recognized, perhaps long
after the fact, as a bug, then this information can be used
for considering multiple different debugging strategies, each
associated with a different representation of the cause. For
example, all decisions in any computer program can be
thought of as a machine code instruction that checks whether
specific register is equal to zero in order to decide whether
or not to jump to another part of the program. All decisions
in a computer are executed at this level of detail, but this
is not a good representation for high-level thinking about
causality. For most of our causal representations we would
prefer a more abstract description of the situation or event
in which the decision took place, what agent or agency



within the mind was responsible for the code that made the
decision. In any case, whether we are debugging a low-level
or high-level idea, we prefer to err on the side of being able
to record more information than less. Causal tracing can
always be set to only trace specific layers of abstraction in
Funk2, so machine code tracing is only relevant if the system
wanted to reflectively learn something about it’s own low-
level implementation. Typically, we imagine users of Funk2
mainly tracing and building critics to recognize patterns in
their own user-defined procedural events. There are many
other parts of a causal relationship that we would like to be
able to refer to in a reflective process that is debugging a
bug in a plan:
• Event or situation.
• Agents or agencies involved.
• Knowledge used for compiling those agents.
• Critics and selectors that were active during the com-

piling of this decision point.
• Reflective processes that were monitoring the planning

process at the time.
• Self-reflective critics and selectors that were being used

to control the reflective focus.
• Configurations of self-models activated or suppressed

during plan creation.
• Goals that were active.
• Self-conscious critics and imprimers2 that were active,

if any.
This a short list of the types of causal knowledge repre-
sentations that must be handled by different types of causal
tracing critic agents.

F. Funk2 Represents each Critic and Selector as a Separate
Thread

Funk2 is an abstract simulation of a distributed operating
system. In addition to the normal primitive data-types of
most popular languages, Funk2 also allows access to the
following primitive data-types as first class citizens:
• cause
• funktion
• object-type
• fiber (virtual thread)
• scheduler
• processor

Also, like many modern languages, Funk2 represents all
primitive and abstract data within the language as frames
with named and typed slots. Built-in slot types for frames
include get, set, and execute. The object system is relatively
primitive thus far, without incorporating much of the meta-
object protocol [17], but we expect our unique cause object
to take care of most of the previously complicated meta-
object protocol by putting the protocol into the evaluator.
The Funk2 core is written entirely in C, just like all popular

2imprimer: a mental simulation of a role-model.

operating systems these days, so any operating system or
external package specific extensions to the language should
be easy additions.

1) The Cause Object: Cause objects are created and
linked to parent cause objects with the creation of every
new execution event, such as the spawning of a new thread.
Typically, tracing of multi-threaded programs gets compli-
cated because of the complex inheritance structure of causes
for events. Because we have designated a special register in
each thread for a cause object, which monitors and controls
memory access, we expect to handle this problem more
efficiently by always having this abstract control at the locus
of every memory access. Without causal tracing of memory
access invoked, our interpreter runs at full speed, while when
a piece of memory that requires causal tracing encounters
a traced cause, this will create events that are appended to
a cause-specific trace. We expect cause objects to be one
simplifying key to many complicating problems of credit
assignment.

Cause objects are frames with typed slots, just like all
data in Funk2, but because cause objects follow the causal
execution paths of processes, these objects can be used for
storing different types of traces of process executions. Funk2
is a reflective frame-based programming language, in which
case, “an object would not only represent information about
the thing in the domain it represents, but also about (the
implementation and interpretation of) the object itself: when
is it created? by whom is it created? what constraints does
it have to fulfill? etc.” [18].

G. Implementation of Mental Resources as Funk2 Fibers

We refer to critics and selectors as types of “mental
resources” in our cognitive architecture. As previously dis-
cussed, in the EM1 Critic-L implementation of the Emotion
Machine architecture, these resources are specified in a lisp
declarative form. Because we wish our architecture to remain
representationally agnostic and thus more generally appli-
cable for a variety of programmers working together, our
mental resources are implemented using any form of the lisp-
like Funk2 code. For example, for every mental resource,
we allocate a virtual process that we call a fiber; a fiber is
to a Funk2 program as a thread is to a C program. Fibers
are scheduled by the Funk2 core and are very lightweight
bytecode interpreters that execute in parallel. All processes
in Funk2 are executed within fibers. Funk2 allows intricate
control and inspection of fibers that allow pausing, resuming,
and rescheduling fibers. Each mental resource, such as a
critic or a selector, is allocated a separate fiber that is initially
paused. The architecture supports thousands of concurrent
mental resources that can be activated and suppressed by
one another. We imagine that most mental resources in a
given critic-selector architecture are not active at any given
moment. Each mental resource can execute arbitrary lisp-like
Funk2 code, given that it is in an activated state. Further, all
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Figure 3. This diagram shows roughly how information flows within and
between two of the six layers discussed in the Emotion Machine critic-
selector architecture.

data that is manipulated by a fiber is manipulated within
the context of the current local cause that has activated the
mental resource.

H. How Funk2 Causal Tracing Helps Learning with Critics
and Selectors

Figure 3 shows roughly how information flows within
and between two of the six layers of the Emotion Machine
critic-selector architecture. Unlike in EM1, we expect the
next version of this architecture to allow arbitrary procedural
descriptions of critic and selector agents, rather than strict
declarative logical forms. The added causal memory tracing
features of the Funk2 programming language allow credit
assignment algorithms to still trace causal agency between
critics and selectors. Funk2 keeps track of many types of
primitive memory events for all objects in the language,
which allows programmers the freedom to express them-
selves in a way that is natural for someone familiar with
languages such as Python, Java, C++, or Lisp. Funk2 inherits
the object-oriented ideas from Java, C++, and Python, such
as dynamic object frames and object types, while also
incorporating the interactive compiler and “data as code”
minimalist syntax ideas from Lisp. While we expect to in-
corporate a few logical programming ideas from Prolog, we
will focus our approach to problem of deduction, induction,
and inference from more of a commonsense natural language
perspective [19].

IV. THEORETICAL APPROACH

A. Our Model

The primary feature of our model of life is that the process
of life is a social endeavor, so we introduce the set of social
individuals, I.

I∗ = |I| (1)

I = {I0, I1, I2, ..., II∗−3, II∗−2, II∗−1} (2)
I ∈ I (3)

Also, since life is a physical process, we will now define a
model of the physical space, in which our individuals exist.
We will use a two-dimensional grid that will be the part
of our objective model that will be analogous to the real
surface of the Earth. We define each dimension of our two-
dimensional spatial world as a variable, X, from the natural
numbers including zero and bounded by the supremum, X∗:

X∗ = |X|, (4)
X = {0, 1, 2, ..., X∗ − 3, X∗ − 2, X∗ − 1}, (5)
X ∈ X. (6)

The positions, ~X, in our two-dimensional model are defined
as the product of two of these dimensions,

~X = X×X, (7)
~X ∈ ~X, (8)
~X = {Xx, Xy}. (9)

Each individual, I , has a physical position, ~IX , such that

~IX ∈ ~X. (10)

B. The Social Process of Genetic Evolution

Each individual in our model has a genetic binary string,
IG, that determines that individual’s phenotypical behavior.
We save our discussion of how the genes of an individual
determine the phenotypical parts of the individual, let us
just say now that these genes determine the initial state,
IM (t = 0), of the individual’s “mind” process.

The primary social relationship in our model is one of
sexual reproduction, requiring two parent individuals for
every child individual. The crossover combination of two
gene lines during sexual reproduction allows combining
successful mutations from multiple gene lines, an important
adaptive speed advantage for sexual over asexual reproduc-
ers. The sexual reproduction event has two main parts, a set



of two parents, {IP0 , IP1}, and a child, IC :

IP0 ∈ I, (11)
IP1 ∈ I, (12)
IC ∈ I, (13)
IP0 6= IP1 , (14)
IC 6= IP0 , (15)
IC 6= IP1 , (16)
IP = {IP0 , IP1}, (17)
IP ∈ IP. (18)

Also, in order to clear space for a new individual to exist,
we must have individuals die, so that they free positions in
the physical world for a new variety of genetic individuals
to exist. Every individual has a birth time, Itb

, a life length,
Itl

, and a death time, Itd
:

Itl
≥ 0, (19)

Itd
= Itb

+ Itl
, (20)

t≥Itb
and t < Itd

⇔ [alive I]. (21)

C. Environmental Energy Sources

In our model, we create every individual with a personal
amount of energy storage, like a battery. The ability of a
individual to survive until death from old age becomes a
question of the ratio of energy used over energy gathered
from these puzzles.

We introduce a limited life-giving resource, without which
an individual is dead. We call this life-giving resource
“energy,” and we represent energy as a variable from the
natural numbers including zero.

IE = {0, 1, 2, ...} (22)
IE ∈ IE (23)

We define being dead for an individual as that individual
having no energy, and we define being alive as not being
dead.

IE = 0 ⇔ [dead I], (24)
IE 6= 0 ⇔ [alive I]. (25)

(26)

D. Energy Providing Puzzles

These energy providing puzzles can be thought of as
games that one can choose to play, which results in either
winning or losing. For example, one type of puzzle would
be playing a game of chess against an artificial opponent.
Another type of puzzle would be a block stacking problem in
the relational “blocks world” domain. Yet another such type
of puzzle may take place in the Commonsense Simulation,
which we will describe shortly.

An energy providing puzzle has a set of possible states,
PS, where each such state, PS , is a labelled directed graph.

We choose a labelled directed graph as our state space
because this mathematical object can represent any data
structure in a frame-based computer program, so our games
include any game that can be represented as a computer
program. We now define a “natural” Markovian temporal
function, PN , for the puzzle state. Each puzzle also has a
set of action functions, PA, which an individual, I , can cause
to occur. Each of these action functions has a number, PAn ,
of arguments. Some of these actions may be “perceptual”,
which like functional processes, have a “return” result but
otherwise do not affect the system. Some of these actions
may be “motor,” which has a physical effect on the puzzle
object, possibly resulting in a change in the agent’s en-
ergy, IE , and possibly also returning a value. The overall
transition function, PT , for the puzzle is not Markovian
and depends upon an individual’s mind process to choose a
puzzle action, IPa

(t), and a list of arguments, IPr(t), which
together fully specify the individual action puzzle transition
function, IPA(t).

IPa
(t) and IPr(t) ⇔ IPA(t), (27)

PT (t) = PN ◦IPA(t). (28)

This type of puzzle process is similar to the popular problem
in AI of learning to control a Markov Decision Process
(MDP) for which there are very few solutions for the
large state and action space of arbitrary computer programs
that we have defined here. The observation, IPo(t), of the
individual is a subset of the state, PS(t), of the puzzle.

PS0 ∈ PS, (29)
PS(0) = PS0 , (30)

PT (PS(t)) ∈ PS, (31)
PS(t + 1) = PT (PS(t)), (32)

IPo(t) ⊆ PS(t). (33)

Any type of problem, whose domain can be represented as
a labelled directed graph, can be used as a puzzle in this
sense. These types of problems, we call a “puzzle” and are
often in very large spaces, |PS|≫0, with transition functions,
requiring |PS|2 bits in general to specify. These calculations
assume that we are only working with graphs with a finite
number of nodes and edges.

Puzzles exist at a physical location, ~PX , such that

~PX ∈ ~X. (34)

If an individual exists at the same position as a puzzle, we
call that individual, the “solver”, PI , of the puzzle:

PI = I ⇔ ~PX = ~IX . (35)

E. The Commonsense Puzzle Simulation

Figure 4 shows a simple puzzle simulation that is based
on a three-dimensional world drawn with simple two-
dimensional images. Our world is interesting not because



Figure 4. Commonsense Simulator: A simple commonsense simulation,
based on a bounded continuous three-dimensional world with predefined
objects and actions. This world is similar to the classic “blocks world”
simulation, except that it is meant to model human learning in complex
social narratives that include children, parents, and strangers. Commonsense
Simulator exists as one of the puzzles that an individual, I , is meant to
reason about and control in order to gather energy.

of the large number of states that it physically simulates
but instead because of its ability to simulate complex social
narratives with which our agent interacts. The puzzle world
contains multiple individuals, some children, some parents,
and some strangers that can communicate with one another.
However, only the puzzle solver, PI , can perform actions in
order to interact with the puzzle, resulting in a change in
energy, PIE

, for the puzzle solver.

V. EVALUATION METHOD

As with any theoretical modelling project, a question of
evaluation comes down to the question: how well does the
model correlate with reality? Because our theory has many
variables in the reflective layers that control a social human
being during learning, there are many ways that we can
think of potentially evaluating the realism of our model
in a study. For example, as our agent is simulated in our
simple physical commonsense simulation, we can ask human
subjects whether or not the performance of the AI agent is
realistic. For each layer of the algorithm, we can ask survey
questions, beginning with the lowest, physical, layer. For
example, Figure 5 shows questions that address the realism
of the six layers of our model, the physical simulation as
well as five reflective layers in our AI algorithm, namely
the following layers: (0) physical simulation, (1) physically
reactive, (2) deliberative, (3) reflective, (4) self-reflective, (5)
self-conscious.

VI. EXPECTED CONTRIBUTIONS

Our contributions will include the following:
1) the Commonsense Simulator for creating simple phys-

ical and social narratives,

2) the Funk2 open-source reflective programming lan-
guage,

3) the Moral Compass model-6 critic-selector cognitive
architecture,

4) a catalog of implemented reflective, self-reflective, and
self-conscious critics,

5) a human experimental study of the commonsense re-
alism of the different processes in our implementation
of this social theory of learning.

VII. TIME LINE

1) 2010 January: Demonstrate Funk2 deliberative layer
knowledge and planner.

2) 2010 February: Demonstrate reflective category learn-
ing from plan failure.

3) 2010 March: Demonstrate learning of self-reflective
models by clustering reflective behaviors.

4) 2010 April: Demonstrate learning of values of self-
reflective models by parental praise and scolding.

5) 2010 May: Evaluate realism of model with user study.
6) 2010 June: Finish writing dissertation.
7) 2010 August: Defend dissertation.
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