
Funk2: A Distributed Processing Language for Reflective Tracing
of a Large Critic-Selector Cognitive Architecture

Bo Morgan
MIT Media Lab
20 Ames Street

Cambridge, MA 02139 USA
bo@mit.edu

Abstract—We see the field of metareasoning to be the answer
to many large organizational problems encountered when
putting together an understandable cognitive architecture,
capable of commonsense reasoning. In this paper we review the
EM1 implementation of the Emotion Machine critic-selector
architecture, as well as explain the current progress we have
made in redesigning this first version implementation. For this
purpose of redesign and large-scale implementation, we have
written a novel programming language, Funk2, that focuses on
efficient metareasoning and procedural reflection, the keystones
of the critic-selector architecture. We present an argument for
why the Funk2 programming language lends itself to easing
the burden on programmers that prefer to not be restricted to
strictly declarative programming paradigms by allowing the
learning of critic and selector activation strengths by credit
assignment through arbitrary procedural code.

Keywords-common sense reasoning; cognitive architecture;
critic-selector architecture; metareasoning; credit assignment;
programming language; reflective causal tracing; EM1; Funk2

I. CLOSED-LOOP CONTROL AND LEARNING

There are many artificial intelligence algorithms that pro-
vide explanations for how to accomplish goals or gather
rewards in a domain. A basic artificial intelligence system
consists of three processes: (1) perceptual data are gen-
eralized and categorized to learn induced abstract models,
(2) abstract models are used to infer expected hypothetical
states, i.e. states of future, past, or otherwise “hidden”
variables, (3) actions are chosen based on considerations of
different action-dependent inferences.

While there are many types of machine learning algo-
rithms that focus on this abstract 3-step closed-loop process
of learning to control, the field of meta-cognition [1] focuses
on making at least two layers of closed-loop systems. The
first closed-loop learning algorithm learns how to deal with
the external world, while the second closed-loop learning
algorithm perceives the state of the algorithm below. We
see meta-cognition as a layering of learning algorithms, such
that the second layer algorithm learns from perceiving the
activity of the first layer and controls or modifies this first
layer. While it may be clear how to trace changes in the
perceptual inputs of layer one of the algorithm, it is less
than clear how the second layer learner should monitor the

changes in the state of the first layer learner.

II. A REVIEW OF THE EMOTION MACHINE V1.0

One system that implements commonsense reasoning,
based on Minsky’s Emotion Machine theory of mind [2],
is a metareasoning system for correcting faulty plans, called
EM1 (Emotion Machine, v1) [3]. EM1 is written in Lisp,
using a Prolog extension as the logical resolution tool. EM1
is a layered architecture consisting of reactive, deliberative,
and reflective layers. Mental critics are represented as com-
monsense narratives that result in queries to a collection
of different Prolog knowledge bases. The commonsense
narratives are given to the system in a Lisp format that is
compiled into the knowledge bases as collections of horn
clauses. These knowledge bases consist of collections of
domain-specific horn clauses that are divided into physical,
social, and mental domains of reasoning. On top of this
Prolog logical substrate, the Lisp program is organized
into layers as a critic-selector model of mind [4]. The
narrative plans that are generated by the deliberative layer
are executed by a lower-layer, called the reactive layer. Part
of the reactive layer of the algorithm is written in C and runs
PID control loops in a simulated social two-wheeled inverted
pendulum type robot. EM1 demonstrates how a system can
use commonsense narratives in order to reason by analogy in
order to generate plans. Also, EM1 demonstrates a learning
process that is driven by reflective critical recognition of
failure. Because of the complexity of the rigid-body physics
in the world, sometimes even the most carefully constructed
plans fail. EM1 has a layer of reflective critics that debug
deliberative narratives as they are being interpreted by using
a collection of commonsense narrative debugging critics.
Using narratives about social situations, EM1 infers the goals
of the other agents in the world given partial knowledge of
their visible physical actions. When mistakes are made in
this inference process, the failure is recognized reflectively,
after the fact. Specific types of debugging responses are
implemented for different forms of critical failures. EM1 is
a step toward a large and complex commonsense reasoning
agent with multiple layers of metareasoning that inspect,
control, and debug mental representations.

A. Common Sense Requires Many Ways to Think

The original theory for how to build the EM1 model was
published earlier [5] as a more complicated model involving
additional layers of self-reflective, self-conscious, and self-
ideal critics for further reflective control. The architecture fo-
cuses on combining “ways to think”, which are connections
and activations of constellations of reflective, deliberative,
and reactive sets of critics and selectors. Also, the reader
is referred to this work for a more detailed description of
the critic-selector algorithm. We need an architecture that
allows many different ways to think because while a single
reasoning method may work for a specific problem, no any
one reasoning method works for solving all different types of
problems [6]. Perhaps one day we will discover a simple key
or mathematical formula for deriving all other intelligence,
but let’s first focus on building a machine that demonstrates
any kind of robust commonsense intelligence before making
any simplifying optimizations. What we see as necessary
for developing a model of commonsense intelligence is the
ability to quickly switch between different representations of
problems that allow different reasoning methods to continue
where any single method would have gotten stuck. See [7]
for an overview of the Panalogy architecture for a more
detailed explanation of why multiple representations that
invoke different procedures of thought are necessary for
building a model of a robust problem solving mind.

B. A Brief Overview of the EM1 Critic-Selector Architecture

Cognitive activity in the EM1 architecture is driven by
mental critics. These critics respond to patterns in the repre-
sentations of the physical world as well as to representations
of traces of the mental processes of the architecture itself.
Figure 1 shows an example of a mental critic in EM1’s
Critic-L language. These critics are organized into three
layers: (1) the reactive layer, (2) the deliberative layer, and
(3) the reflective layer. We will now briefly describe the
implementations of these three layers.

C. The Reactive Layer

The reactive layer consists of critics that fire in response
to patterns in the sensory state. For example, here are a few
Critic→Selector pairs used in EM1:

• Difference Between Conditions And Desires → Pro-
pose Action By Analogy

• Special Observation → Act Reflexively
• Being Watched By Helpful Agent→ Explicitly Demon-

strate Intent
• Preconditions Met For Intended Action→ Take Action

D. The Cyclical Process of the Deliberative Layer

Deliberation critics, unlike reactive critics, fire in response
to hypotheses, which are plans in the form of narratives
about agents and actions that could be taken in the world.

The deliberative process occurs in the following three-step
cycle:

1) Hypotheses are assessed by evaluating deliberative
critics.

2) The hypotheses with least potential are forgotten.
3) Critics fire associated selectors which create improved

variations of the remaining hypotheses.
Deliberative critics are roughly divided into six types of
hypothesis problems: plausibility, importance, cohesiveness,
relevance, informativeness, and consistency. A few example
deliberative Critic→Selector pairs are:

• Unknown Action Consequence → Hypothesize By
Analogy

• Unknown Relation Consequence → Hypothesize By
Analogy

• Unknown Motivation → Hypothesize By Analogy
• Sequential Observation Inconsistent With Depen-

dency → Negatively Assess Hypothesis
• Observes Opposite Of Actor Desire → Make A Note

For Reflective Layer
• Actor Causes Problem For Itself → Negatively Assess

Hypothesis
• Other Actor Undoes Desire → Make A Note For

Reflective Layer
• Implication Not Inferred → Add Implication
• Involves Undesirable Situation → Prepend Repair
• Involves Undesirable Situation → Prepend Repair

E. The Reflective Layer

Reasoning by applying deliberative critics is neither sound
nor complete, which leads to errors such as incorrect infer-
ences being made and correct inferences failing to be made.
Thus the process of criticizing hypotheses by deliberative
critics is itself criticized by reflective critics. The deliberation
cycle in EM1 leaves a detailed trace of activity, but this activ-
ity is usually difficult to look at, so there are special auxiliary
predicates that make it easier to look at. For example, some
of these convenience predicates are as follows:

• (asserted-by FACT CRITICISM)
• (ultimately-asserted-by FACT CRITICISM)
• (asserts FACT)
• (engages CRITIC)
• (called-by C1 C2)
• (hypothesis-created-by HYP CRITICISM)
• (opinion-changed-about R S O)
• (narrative-not-used ACTION NARR)

Two example reflective critic→selector pairs in EM1 are as
follows:

• action-failed-to-achieve-effect-and-neglected-required-
precondition→append-critic.

• partner-not-helping-and-other-failed-to-infer-
goal→credit-assignment.

(defcritic (reactive*difference-between-conditions-and-desires=>propose-action N)

(in conditions current-conditions

(observes :actor ACTOR :prop (not (REL :subject SUBJ :object OBJ)))

(desires :actor ACTOR

:prop (observes :actor ACTOR

:prop (REL :subject SUBJ :object OBJ))))

(in narratives N

(sequential

(observes :actor ACTOR2 :prop (not (REL :subject SUBJ2 :object OBJ2)))

(does :actor ACTOR2

:prop (ACTION :actor ACTOR2 :object SUBJ2 :target OBJ2) [1])

(observes :actor ACTOR2 :prop (REL :subject SUBJ2 :object OBJ2) [2]))

(causes [1] [2]))

(=>)

(in conditions current-conditions

(assert

(intends :actor ACTOR

:prop (ACTION :actor ACTOR :object SUBJ :target OBJ) [[S]]))

(assert (subsit current-conditions [[S]]))))

Figure 1. An example of an EM1 reactive mental critic in EM1’s Critic-L language. The top of the critic is the knowledge base (KB) name and declarative
pattern to be matched, while the bottom of the critic contains the KB name and declarative pattern to assert.

III. FUNK2 IS A LANGUAGE SPECIFICALLY DESIGNED
FOR THE NEXT EMOTION MACHINE

Funk2 is designed with the following programming lan-
guage and cognitive architectural goals in mind:

1) causal tracing of arbitrary lisp-like processes,
2) massively concurrent multi-threaded simulations, in-

cluding many thousands of lightweight parallel pro-
cesses,

3) layers of reflective critic-selector problem solving,
4) commonsense reasoning cognitive architecture primi-

tives, such as person, event, goal, belief, narrative, etc.

We have completed goals one and two in our current de-
scribed implementation. We are currently working on goals
three and four.

Just after Push Singh completed his PhD work of building
EM1 in 2006, he sadly passed away, leaving a large project
filled with great potential for future research, but since
2006, no one to our knowledge has worked on any other
critic-selector cognitive architectures related to this work.
Because of this, there seems to us to be a hole in this field
of reflective critic-selector cognitive architecture research.
Two years ago this fact was very clear to us, and we at
that point volunteered for the job of rewriting the original
architecture in order to pursue some of the original goals.
We have programmed the beginning of a new Emotion Ma-
chine critic-selector architecture. As there are many future
directions for the EM1 architecture, there were also many
problems with the architecture as it was implemented then.
Some of the primary concerns that we have with this original
implementation are as follows:

• Reasoning is very slow with only 21 narratives in the
memory of the architecture.

• Critics and selectors are specified in a declarative
logical form, which does not allow for reasoning over
noisy or imperfect data.

• The declarative form of the Critic-L language allows
for inserted procedural Lisp code, but any procedural
code inserted in this way is not reflectively traced.

• Critics and selectors cannot run in parallel, which
eliminates the potential for using the architecture for
solving any form of parallel control problem.

• The architecture has great potential for parallelization
but cannot take advantage of multi-core CPUs or dis-
tributed processors.

• Architecture is based on the expensive proprietary com-
mercial languages of Allegro Lisp and Allegro Prolog,
which cannot be used freely by researchers.

• Self-reflective, self-conscious, and self-ideal critics and
selectors are future work to still be implemented.

• Critics and selectors are not learned from experience.

A. Tracing Procedural Branches in Causal Context

Figure 2 shows a schematic example of how a plan
interpreter scans along a plan and, whenever it encounters a
conditional branch, leaves a causal trace of reasons for each
decision made by the process interpreting the plan.

Causality refers to an agent that causes a change in the
world. In our case, the agent is vague and consists of the
current context of the computation; for example, what goals
are currently actively being pursued. This type of memory is
important to keep track of in many different representations

Interpreter

 1 2 ? 3

 1 2 ?

COND=true
CAUSE=*

COND=true
CAUSE=*

Causal Trace

Executing Plan

 1

Figure 2. An example of an executing plan containing a loop being
interpreted and leaving a trace of plan events with conditional events tagged
with contextual information, including the condition evaluated (COND) as
well as the causal context (CAUSE). The symbol “*” refers to a list of
goals, activated critics and selectors, the function call stack, and other user-
specified contextual hints. The “?” represents a conditional expression in a
“while” loop.

itself, so that when a change is recognized, perhaps long
after the fact, as a bug, then this information can be used
for considering multiple different debugging strategies, each
associated with a different representation of the cause. For
example, all decisions in any computer program can be
thought of as a machine code instruction that checks whether
specific register is equal to zero in order to decide whether
or not to jump to another part of the program. All decisions
in a computer are executed at this level of detail, but this
is not a good representation for high-level thinking about
causality. For most of our causal representations we would
prefer a more abstract description of the situation or event
in which the decision took place, what agent or agency
within the mind was responsible for the code that made the
decision. In any case, whether we are debugging a low-level
or high-level idea, we prefer to err on the side of being able
to record more information than less. Causal tracing can
always be set to only trace specific layers of abstraction in
Funk2, so machine code tracing is only relevant if the system
wanted to reflectively learn something about it’s own low-
level implementation. Typically, we imagine users of Funk2
mainly tracing and building critics to recognize patterns in
their own user-specified contextual hints. There are many
other parts of a causal relationship that we would like to be
able to refer to in a reflective process that is debugging a
bug in a plan:

• Event or situation.
• Agents or agencies involved.
• Knowledge used for compiling those agents.
• Critics and selectors that were active during the com-

piling of this decision point.
• Reflective processes that were monitoring the planning

process at the time.
• Self-reflective critics and selectors that were being used

to control the reflective focus.
• Configurations of self-models activated or suppressed

during plan creation.
• Goals that were active.
• Self-conscious critics and imprimers1 that were active,

if any.

This a short list of the types of causal knowledge repre-
sentations that must be handled by different types of causal
tracing critic agents.

IV. FUNK2 REPRESENTS EACH CRITIC AND SELECTOR
AS A SEPARATE THREAD

Funk2 is an abstract simulation of a distributed operating
system. In addition to the normal primitive data-types of
most popular languages, Funk2 also allows access to the
following primitive data-types as first class citizens:

• cause
• funktion
• object-type
• fiber (virtual thread)
• scheduler
• processor

Also, like many modern languages, Funk2 represents all
primitive and abstract data within the language as frames
with named and typed slots. Built-in slot types for frames
include get, set, and execute. The object system is relatively
primitive thus far, without incorporating much of the meta-
object protocol [8], but we expect our unique cause object
to take care of most of the previously complicated meta-
object protocol by putting the protocol into the evaluator.
The Funk2 core is written entirely in C, just like all popular
operating systems these days, so any operating system or
external package specific extensions to the language should
be easy additions.

A. The Cause Object

Cause objects are created and linked to parent cause
objects with the creation of every new execution event,
such as the spawning of a new thread. Typically, tracing
of multi-threaded programs gets complicated because of the
complex inheritance structure of causes for events. Because
we have designated a special register in each thread for a
cause object, which monitors and controls memory access,
we expect to handle this problem more efficiently by always
having this abstract control at the locus of every memory
access. Without causal tracing of memory access invoked,
our interpreter runs at full speed, while when a piece of
memory that requires causal tracing encounters a traced

1imprimer: a mental simulation of a role-model.

cause, this will create events that are appended to a cause-
specific trace. We expect cause objects to be one simplifying
key to many complicating problems of credit assignment.

Cause objects are frames with typed slots, just like all
data in Funk2, but because cause objects follow the causal
execution paths of processes, these objects can be used for
storing different types of traces of process executions. Funk2
is a reflective frame-based programming language, in which
case, “an object would not only represent information about
the thing in the domain it represents, but also about (the
implementation and interpretation of) the object itself: when
is it created? by whom is it created? what constraints does
it have to fulfill? etc.” [9].

V. IMPLEMENTATION OF MENTAL RESOURCES AS
FUNK2 FIBERS

We refer to critics and selectors as types of “mental
resources” in our cognitive architecture. As previously dis-
cussed, in the EM1 Critic-L implementation of the Emotion
Machine architecture, these resources are specified in a lisp
declarative form. Because we wish our architecture to remain
representationally agnostic and thus more generally appli-
cable for a variety of programmers working together, our
mental resources are implemented using any form of the lisp-
like Funk2 code. For example, for every mental resource,
we allocate a virtual process that we call a fiber; a fiber is
to a Funk2 program as a thread is to a C program. Fibers
are scheduled by the Funk2 core and are very lightweight
bytecode interpreters that execute in parallel. All processes
in Funk2 are executed within fibers. Funk2 allows intricate
control and inspection of fibers that allow pausing, resuming,
and rescheduling fibers. Each mental resource, such as a
critic or a selector, is allocated a separate fiber that is initially
paused. The architecture supports thousands of concurrent
mental resources that can be activated and suppressed by
one another. We imagine that most mental resources in a
given critic-selector architecture are not active at any given
moment. Each mental resource can execute arbitrary lisp-like
Funk2 code, given that it is in an activated state. Further, all
data that is manipulated by a fiber is manipulated within
the context of the current local cause that has activated the
mental resource.

VI. HOW FUNK2 CAUSAL TRACING HELPS LEARNING
WITH CRITICS AND SELECTORS

Figure 3 shows roughly how information flows within
and between two of the six layers of the Emotion Machine
critic-selector architecture. Unlike in EM1, we expect the
next version of this architecture to allow arbitrary procedural
descriptions of critic and selector agents, rather than strict
declarative logical forms. The added causal memory tracing
features of the Funk2 programming language allow credit
assignment algorithms to still trace causal agency between
critics and selectors. Funk2 keeps track of many types of

Critic Critic Critic Selector Selector Selector

Critic Critic Critic Selector Selector Selector

Deliberative Layer

Reflective Layer

Traces of Reactive Layer

Traces of Deliberative Layer Plans for Deliberative Layer

Plans for Reactive Layer

Critic Critic Critic Selector Selector Selector

Critic Critic Critic Selector Selector Selector

Reflective Interpreter

Deliberative InterpreterReactive
Layer States

Deliberative
Layer States

Reactive Layer Actions

Deliberative Layer Actions

Figure 3. This diagram shows roughly how information flows within and
between two of the six layers discussed in the Emotion Machine critic-
selector architecture.

primitive memory events for all objects in the language,
which allows programmers the freedom to express them-
selves in a way that is natural for someone familiar with
languages such as Python, Java, C++, or Lisp. Funk2 inherits
the object-oriented ideas from Java, C++, and Python, such
as dynamic object frames and object types, while also
incorporating the interactive compiler and “data as code”
minimalist syntax ideas from Lisp. While we expect to in-
corporate a few logical programming ideas from Prolog, we
will focus our approach to problem of deduction, induction,
and inference from more of a commonsense natural language
perspective [10].

VII. CONCLUSION

So, in conclusion, we see the field of metareasoning to
be the answer to many of the large organizational problems
of putting together the field of artificial intelligence into
one understandable architecture. In this paper we have
reviewed the EM1 implementation of the Emotion Machine
critic-selector architecture, as well as explained the current
progress in redesigning this first version implementation
into the novel Funk2 programming language that has been
designed for this specific purpose. We have presented a brief
review of the recent advances in the machine learning field
of credit assignment. We have presented an argument for
why we think the Funk2 programming language lends itself
to easing the burden on programmers that prefer to not
be restricted to strictly declarative programming paradigms

by allowing learning by credit assignment through arbitrary
procedural code.

ACKNOWLEDGMENT

This work is supported in part by a Media Lab research
fellowship from Bank of America.

REFERENCES

[1] M. Cox and A. Raja, “Metareasoning: A manifesto,” BBN
Technical, 2007.

[2] M. Minsky, The Emotion Machine: Commonsense Thinking,
Artificial Intelligence, and the Future of the Human Mind.
New York, New York: Simon & Schuster, 2006.

[3] P. Singh, “EM-ONE: an architecture for reflective common-
sense thinking,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2005.

[4] M. Minsky, The Emotion Machine: Commonsense Thinking,
Artificial Intelligence, and the Future of the Human Mind—
Thinking, The Critic Selector Model of Mind. New York,
New York: Simon & Schuster, 2006, chapter 7.2, pp. 220–
224.

[5] P. Singh and M. Minsky, “An Architecture for Combining
Ways to Think,” 2003.

[6] J. McCarthy, M. Minsky, A. Sloman, L. Gong, T. A. Lau,
L. Morgenstern, E. T. Mueller, D. Riecken, M. Singh, and
P. Singh, “An architecture of diversity for commonsense
reasoning,” IBM Systems Journal, vol. 41, no. 3, 2002.

[7] P. Singh and M. Minsky, “An architecture for cognitive
diversity,” Visions of mind: architectures for cognition and
affect, p. 312, 2005.

[8] G. Kiczales, D. Bobrow, and J. des Rivieres, The art of the
metaobject protocol. MIT press, 1999.

[9] P. Maes, “Issues in computational reflection,” in Meta-level
architectures and reflection. North-Holland, 1988, pp. 21–
35.

[10] H. Liu and P. Singh, “Commonsense reasoning in and over
natural language,” Lecture Notes in Computer Science, pp.
293–306, 2004.

	Closed-loop Control and Learning
	A Review of The Emotion Machine v1.0
	Common Sense Requires Many Ways to Think
	A Brief Overview of the EM1 Critic-Selector Architecture
	The Reactive Layer
	The Cyclical Process of the Deliberative Layer
	The Reflective Layer

	Funk2 is a Language Specifically Designed for the Next Emotion Machine
	Tracing Procedural Branches in Causal Context

	Funk2 Represents each Critic and Selector as a Separate Thread
	The Cause Object

	Implementation of Mental Resources as Funk2 Fibers
	How Funk2 Causal Tracing Helps Learning with Critics and Selectors
	Conclusion
	References

